Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.391
Filtrar
1.
J Environ Sci (China) ; 142: 1-10, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527875

RESUMO

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Camundongos , Animais , Masculino , Glândula Tireoide/patologia , Bifenil Polibromatos/toxicidade , Encéfalo , Retardadores de Chama/toxicidade , Mamíferos
2.
Artigo em Chinês | MEDLINE | ID: mdl-38538247

RESUMO

The environmental pollution and health hazards caused by the extensive use of organophosphorus flame retardants (OPFRs) have become a problem of wide concern around the world. As a typical OPFR, 2-ethylhexyl diphenyl phosphate (EHDPP) can be detected in water, atmosphere, soil and other environmental media. It widely exists in production and life and can accumulate in organisms, causing great risks the ecosystem and human health. This paper reviews the research of EHDPP domestically and abroad, and summarizes the physicochemical properties of EHDPP and the population situation of occupational exposure, environmental exposure, and population exposure in recent years. Besides, it summarizes the toxic effects and mechanisms of EHDPP, including acute toxicity, hepatotoxicity, neurotoxicity, reproductive and developmental toxicity, and carcinogenesis effects. This paper also proposes the future direction of toxicity and health risks of EHDPP, which provides a theoretical basis for further research on environmental hazards and safety evaluation of EHDPP.


Assuntos
Compostos de Bifenilo , Retardadores de Chama , Exposição Ocupacional , Humanos , Fosfatos , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Ecossistema , Exposição Ocupacional/efeitos adversos
3.
Chemosphere ; 353: 141378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442777

RESUMO

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Feminino , Masculino , Ratos , Animais , Éter , Ratos Sprague-Dawley , Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Etil-Éteres , Neurotransmissores , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
4.
Environ Sci Technol ; 58(12): 5267-5278, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478874

RESUMO

Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 µg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Humanos , Peixe-Zebra , Células Endoteliais/metabolismo , Bifenil Polibromatos/toxicidade , Larva/metabolismo , Retardadores de Chama/toxicidade
5.
Environ Int ; 186: 108596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522228

RESUMO

Organophosphate flame retardants (OPFRs) have been widely detected in multiple environment media and have many adverse effects with complex toxicity mechanisms. However, the early molecular responses to OPFRs have not been fully elucidated, thereby making it difficult to assess their risks accurately. In this work, we systematically explored the point of departure (POD) of biological pathways at genome-wide level perturbed by 14 OPFRs with three substituents (alkyl, halogen, and aryl) using a dose-dependent functional genomics approach in Saccharomyces cerevisiae at 24 h exposure. Firstly, our results demonstrated that the overall biological potency at gene level (PODDRG20) ranged from 0.013 to 35.079 µM for 14 OPFRs, especially the tributyl phosphate (TnBP) exhibited the strongest biological potency with the least PODDRG20. Secondly, we found that structural characteristics of carbon number and logKow were significantly negatively correlated with POD, and carbon number and logKow also significantly affected lipid metabolism associated processes. Thirdly, these early biological pathways of OPFRs toxification were found to be involved in lipid metabolism, oxidative stress, DNA damage, MAPK signaling pathway, and amino acid and carbohydrate metabolism, among which the lipid metabolism was the most sensitive molecular response perturbed by most OPFRs. More importantly, we identified one resistant mutant strain with knockout of ERG2 (YMR202W) gene participated in steroid biosynthesis pathway, which can serve as a key yeast strain of OPFRs toxification. Overall, our study demonstrated an effective platform for accurately assessing OPFRs risks and provided a basis for further green OPFRs development.


Assuntos
Retardadores de Chama , Genômica , Organofosfatos , Saccharomyces cerevisiae , Retardadores de Chama/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Organofosfatos/toxicidade , Relação Dose-Resposta a Droga
6.
Environ Sci Technol ; 58(11): 4937-4947, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446036

RESUMO

Bis(2-ethylhexyl)-tetrabromophthalate (TBPH), a typical novel brominated flame retardant, has been ubiquitously identified in various environmental and biotic media. Consequently, there is an urgent need for precise risk assessment based on a comprehensive understanding of internal exposure and the corresponding toxic effects on specific tissues. In this study, we first investigated the toxicokinetic characteristics of TBPH in different tissues using the classical pseudo-first-order toxicokinetic model. We found that TBPH was prone to accumulate in the liver rather than in the gonad, brain, and muscle of both female and male zebrafish, highlighting a higher internal exposure risk for the liver. Furthermore, long-term exposure to TBPH at environmentally relevant concentrations led to increased visceral fat accumulation, signaling potential abnormal liver function. Hepatic transcriptome analysis predominantly implicated glycolipid metabolism pathways. However, alterations in the profile of associated genes and biochemical indicators revealed gender-specific responses following TBPH exposure. Besides, histopathological observations as well as the inflammatory response in the liver confirmed the development of nonalcoholic fatty liver disease, particularly in male zebrafish. Altogether, our findings highlight a higher internal exposure risk for the liver, enhancing our understanding of the gender-specific metabolic-disrupting potential associated with TBPH exposure.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Masculino , Feminino , Fígado/metabolismo , Metabolismo dos Lipídeos , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
7.
Aquat Toxicol ; 268: 106853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330652

RESUMO

Hexabromocyclododecane (HBCD), third-generation brominated flame retardants (BRFs), has aroused worldwide concern because of its wide application and potentially negative impacts on marine ecosystems, but an information gap still exists regarding marine low-trophic organisms. Brachionus plicatilis, the model marine zooplankton, was used in the present study, and its reproductive responses were used as the endpoint to indicate HBCD-induced toxicity. HBCD was suggested to be extremely highly toxic compounds regarding the 96 h-LC50 of 0.58 mg L-1. The sublethal exposure of HBCD injured the reproduction of B. plicatilis: The total number of offspring per female and the key population index calculated from the life table, including the intrinsic rate of population increase (rm) and net reproductive rate (R0), were significantly influenced in a concentration-dependent manner. The reproductive process was also altered, as indicated by the first spawning time, first hatching time and oocyst development time. At the same time, individual survival and growth (body length) were also negatively affected by HBCD. Reactive oxygen species (ROS) were suggested to be responsible for reproductive toxicity mainly because the total ROS contents as well as the main components of •OH and H2O2 greatly increased and resulted in the oxidative imbalance that presented as malondialdehyde (MDA) elevation. Simultaneous activation of the glutathione antioxidant system was accompanied by the apoptosis marker enzymes Caspase-3 and 9, as well as the correlation between ROS content, physiological alteration and cell apoptosis, providing further evidence for this. The integrated biomarker response (IBR) and adverse outcome pathway (AOP) showed that HBCD had a significant toxic effect on B. plicatilis near the concentration range of 96 h-LC50. The establishment of this concentration range will provide a reliable reference for future environmental concentration warning of HBCD in marine.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Rotíferos , Poluentes Químicos da Água , Animais , Feminino , Espécies Reativas de Oxigênio/metabolismo , Ecossistema , Peróxido de Hidrogênio , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Bromados/toxicidade , Reprodução , Retardadores de Chama/toxicidade
8.
Toxicol Lett ; 394: 11-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387762

RESUMO

BACKGROUND: The incidence of endocrine-related cancer, which includes tumors in major endocrine glands such as the breast, thyroid, pituitary, and prostate, has been increasing year by year. Various studies have indicated that brominated flame retardants (BFRs) are neurotoxic, endocrine-toxic, reproductive-toxic, and even carcinogenic. However, the epidemiological relationship between BFR exposure and endocrine-related cancer risk remains unclear. METHODS: We searched the PubMed, Google Scholar, and Web of Science databases for articles evaluating the association between BFR exposure and endocrine-related cancer risk. The odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were used to assess the association. Statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Begg's test was performed to evaluate the publication bias. RESULTS: We collected 15 studies, including 6 nested case-control and 9 case-control studies, with 3468 cases and 4187 controls. These studies assessed the risk of breast cancer, thyroid cancer, and endocrine-related cancers in relation to BFR levels. Our findings indicate a significant association between BFR exposure in adipose tissue and an increased risk of breast cancer. However, this association was not observed for thyroid cancer. Generally, BFR exposure appears to elevate the risk of endocrine-related cancers, with a notable increase in risk linked to higher levels of BDE-28, a specific polybrominated diphenyl ether congener. CONCLUSIONS: In conclusion, although this meta-analysis has several limitations, our results suggest that BFR exposure is a significant risk factor for breast cancer, and low-brominated BDE-28 exposure could significantly increase the risk of endocrine-related cancers. Further research is essential to clarify the potential causal relationships between BFRs and endocrine-related cancers, and their carcinogenic mechanisms.


Assuntos
Neoplasias da Mama , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Humanos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Fatores de Risco , Hidrocarbonetos Bromados/toxicidade
9.
Ecotoxicol Environ Saf ; 273: 116142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394757

RESUMO

BACKGROUND: The relationship between brominated flame retardants (BFRs) exposure and the human liver was still not well understood. METHODS: A total of 3108 participants (age > 12) from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016 were included as the study population, with nine BFRs exhibiting a detection rate of over 70% serving as the exposure factor. The singular effects and combined effects of BFRs exposure on liver injury, non-alcoholic fatty liver disease (NAFLD), and advanced hepatic fibrosis (AHF) were evaluated separately. Finally, COX regression was employed to explore the hazard ratios associated with individual BFRs. RESULTS: In our analysis of individual exposures, we found significant positive association of PBB153 with alanine aminotransferase (ALT), PBB153 with aspartate aminotransferase (AST), PBDE47, PBDE85, PBDE99, PBDE100, and PBDE154 with alkaline phosphatase (ALP), PBDE28 and PBB153 with gamma-glutamyl transaminase (GGT), PBB153 with the risk of NAFLD and AHF; and significant negative association of PBB153 with ALP, PBDE28, PBDE47, PBDE99, PBDE100, PBDE85, PBDE209, and PBDE154 with albumin (ALB), PBB153 with AST/ALT. The nonlinear analysis results from Restricted Cubic Spline (RCS) further validated these associations (all P<0.05). In the mixed analysis combining Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analysis, BFRs were positively associated with ALT (ß>0, P<0.001), GGT (ß>0, P<0.001), and the risk of NAFLD (OR>1, P=0.007). Conversely, BFRs exhibited significant negative correlations with ALP (ß<0, P<0.001), ALB (ß<0, P<0.001), and AST/ALT (ß<0, P<0.001). Furthermore, the COX regression analysis revealed that PBB153 had the highest hazard ratio among the BFRs. CONCLUSIONS: BFR exposure may increase the risk of liver injury and NAFLD, with no significant association with AHF risk. The impact of BFR exposure on liver health should not be overlooked, especially in individuals residing in impoverished areas.


Assuntos
Retardadores de Chama , Hepatopatia Gordurosa não Alcoólica , Bifenil Polibromatos , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Inquéritos Nutricionais , Fígado , Fosfatase Alcalina , Alanina Transaminase , Cirrose Hepática
10.
Ecotoxicol Environ Saf ; 273: 116158, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417316

RESUMO

Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Fosfinas , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Proteína Supressora de Tumor p53/genética , Organofosfatos/toxicidade , Dano ao DNA
11.
Gen Comp Endocrinol ; 350: 114469, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360373

RESUMO

Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.


Assuntos
Retardadores de Chama , Peixe-Zebra , Humanos , Ratos , Animais , Peixe-Zebra/metabolismo , Éteres/análise , Éteres/metabolismo , Análise de Sequência de RNA , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Retardadores de Chama/metabolismo
12.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382014

RESUMO

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Animais , Camundongos , Retardadores de Chama/toxicidade , Éter , Bioacumulação , Sêmen , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Éteres , Etil-Éteres
13.
Sci Total Environ ; 921: 170864, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401740

RESUMO

As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 µM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.


Assuntos
Retardadores de Chama , Zooplâncton , Animais , Simulação de Dinâmica Molecular , Natação , Simulação de Acoplamento Molecular , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Ceramidas , Lipídeos , Trifosfato de Adenosina , Retardadores de Chama/toxicidade
14.
J Agric Food Chem ; 72(7): 3741-3754, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340082

RESUMO

Decabromodiphenyl ether (BDE-209) is a widely used brominated flame retardant that can easily detach from materials and enter into feed and foodstuffs, posing a serious risk to human and animal health and food safety of animal origin. However, the immunotoxic effects of BDE-209 on the avian spleen and the exact mechanism of the toxicity remain unknown. Therefore, we established an experimental model of BDE-209-exposed chickens and a positive control model of cyclophosphamide-induced immunosuppression in vivo and treated MDCC-MSB-1 cells and chicken splenic primary lymphocytes with BDE-209 in vitro. The results showed that BDE-209 treatment caused morphological and structural abnormalities in the chicken spleens. Mechanistically, indicators related to oxidative stress, endoplasmic reticulum stress (ERS), autophagy, and apoptosis were significantly altered by BDE-209 exposure in both the spleen and lymphocytes, but the use of the N-acetylcysteine or the 4-phenylbutyric acid significantly reversed these changes. In addition, BDE-209 exposure decreased the spleen antimicrobial peptide and immunoglobulin gene expression. In conclusion, the present research revealed that BDE-209 exposure enhanced lymphocyte autophagy and apoptosis in chicken spleen via the ROS-mediated ERS pathway. This signaling cascade regulatory relationship not only opens up a new avenue for studying BDE-209 immunotoxicity but also provides important insights into preventing BDE-209 hazards to animal health.


Assuntos
Galinhas , Retardadores de Chama , Humanos , Animais , Galinhas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo , Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Retardadores de Chama/toxicidade
15.
Environ Sci Pollut Res Int ; 31(11): 16770-16781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321284

RESUMO

Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500 µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.


Assuntos
Retardadores de Chama , Fosfinas , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/metabolismo , Compostos Organofosforados/toxicidade , Retardadores de Chama/toxicidade , Acetilcolinesterase/metabolismo , Organofosfatos/toxicidade , Encéfalo/metabolismo , Fosfatos , Adenosina Trifosfatases
16.
J Hazard Mater ; 466: 133543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262318

RESUMO

The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Monitoramento Ambiental , Organofosfatos/análise , Água/análise , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Octanóis , Ésteres/toxicidade
17.
Sci Total Environ ; 915: 170131, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38246379

RESUMO

The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.


Assuntos
Compostos de Bifenilo , Retardadores de Chama , Perciformes , Animais , Humanos , Organofosfatos/toxicidade , Peixe-Zebra , Larva , Fosfatos , Retardadores de Chama/toxicidade , Inflamação
18.
Ecotoxicol Environ Saf ; 270: 115924, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171103

RESUMO

As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.


Assuntos
Retardadores de Chama , Fosfinas , Poluentes Químicos da Água , Retardadores de Chama/toxicidade , Espectrometria de Massas em Tandem , Compostos Organofosforados , Organofosfatos/toxicidade , Organofosfatos/química , Oxirredução , Água , Fosfatos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
19.
Aquat Toxicol ; 267: 106833, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215608

RESUMO

The production and usage of organophosphate flame retardants (OPFRs) in textiles, plastics, and electronics have surged, with phosphorus-based flame retardants constituting over 30 % of the global consumption of flame retardants. Meanwhile, concerns regarding the potential hazards of OPFRs to ecosystems and human health including disruptions in the endocrine system, inhibition of reproduction, and manifestation of developmental defects have intensified. However, our comprehensive data analysis has unveiled a pronounced and critical knowledge gap, as at present, a majority of studies emphasize the attributes of traditional OPFRs, such as triphenyl phosphate (TPHP), while emerging OPFRs (eOPFRs) remain undeservedly overlooked. We elaborated on the current advancements and challenges regarding eOPFRs research and demonstrated that eOPFRs exhibit considerable diversity in terms of their chemical structures, substantial residue levels, broad sources of occurrence, and limited understanding of their potent (eco)toxicological implications. In light of these attributes, it becomes evident that the environmental and health risks of eOPFRs can be comparable to, if not surpass, those attributed to traditional OPFRs. This compelling observation underscores an imperative need for heightened research focus and extensive research efforts dedicated to the study of eOPFRs, rather than still focusing on the realm of their traditional counterparts. Despite the challenges ahead, the emphasized environmental surveillance and toxicological assessment are imperative to prevent the potential evolution of these compounds into a significant ecological and human health threat.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Humanos , Retardadores de Chama/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Organofosfatos/toxicidade , Monitoramento Ambiental , Compostos Organofosforados
20.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219622

RESUMO

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Assuntos
Ferroptose , Retardadores de Chama , Organofosfatos , Feminino , Animais , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , Acetilcolinesterase , Retardadores de Chama/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Espécies Reativas de Oxigênio , Compostos Organofosforados/toxicidade , Estresse Oxidativo , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...